
Find the height of the apple when \(F = \frac{1}{2} F_e \) at the surface:

(a) outside the planet

(b) inside the planet

\[F_{\text{apple-planet}} = \frac{G \text{apple} \cdot \text{M}_{\text{planet}}}{d^2} = \frac{1}{2} F_e = \frac{1}{2} \frac{G \text{apple} \cdot \text{M}_{\text{planet}}}{r_{\text{planet}}^2} \]

\[\frac{G \text{M}_{\text{apple}} \cdot \text{M}_{\text{planet}}}{d^2} = \frac{1}{2} \frac{G \text{M}_{\text{apple}} \cdot \text{M}_{\text{planet}}}{r_{\text{planet}}^2} \]

Understanding of \(r \) in Eqs vs altitude

\[d^2 = 2r_{\text{p}}^2 \]

\[d = \sqrt{2} r_{\text{p}} \]

\[\Rightarrow d = h + r_{\text{p}} \]

\[h = d - r_{\text{p}} = \sqrt{2} r_{\text{p}} - r_{\text{p}} = 0.414 r_{\text{p}} \]

(b) Inside the planet, recall the Shell Theorem

\(\Rightarrow \) a shell exerts no net gravitational force on a particle inside of it.

\[M_{\text{planet}} = \text{mass of planet which still creates a net gravitational force on the apple} \]

\[F_{\text{apple-planet}} = \frac{G \text{M}_{\text{apple}} \cdot \text{M}_{\text{planet}}'}{d^2} = \frac{1}{2} F_e = \frac{1}{2} \frac{G \text{M}_{\text{apple}} \cdot \text{M}_{\text{planet}}'}{r_{\text{planet}}^2} \]

Assume uniform density:

\[M_{\text{planet}}' = \rho \frac{4}{3} \pi d^3 \]

\[M_{\text{planet}} = \rho \frac{4}{3} \pi r_{\text{p}}^3 \]

\[M_{\text{planet}}' = \text{M}_{\text{planet}} \cdot \frac{d^3}{r_{\text{p}}^3} \]

\[\frac{G \text{M}_{\text{apple}} \cdot \text{M}_{\text{planet}}'}{d^2} = \frac{1}{2} \frac{G \text{M}_{\text{apple}} \cdot \text{M}_{\text{planet}}'}{r_{\text{planet}}^2} \]

\[\frac{d}{r_{\text{p}}^2} = \frac{1}{2} \frac{d}{r_{\text{p}}^2} \]

\[d = \frac{r_{\text{p}}}{2} \Rightarrow h = r_{\text{p}} - d = r_{\text{p}} - \frac{r_{\text{p}}}{2} = \frac{1}{2} r_{\text{p}} \]
Problem 13-42

Given: \(m_B = m_C = m \)
\(D = 0.3057 \text{ m} \)
\(r_{AB} = r_{AC} = R \) (symmetry) as \(y \to 0 \) \(U \to -2.7 \times 10^{-11} \text{ J} \)

Find (a) \(m_B = m_C = m \)
(b) \(m_A \)

Potential Energy:
\[
U = -\frac{G m_B m_C}{R} \quad \text{(I)}
\]

\[
U_{\text{system}} = U_{AB} + U_{BC} + U_{AC}
= -\frac{G m_B m_A}{r_{AB}} - \frac{G m_C m_C}{r_{BC}} - \frac{G m_A m_C}{r_{AC}}
\]

But \(m_B = m_C = M \)
\(r_{AB} = r_{AC} = R \)
\(r_{BC} = 2D \)
\(r_{AC} = 2D \)

\[
= -\frac{G m_A M}{R} - \frac{G M M}{2D} - \frac{G m_A M}{2D} = -\frac{2G m_A M}{R} - \frac{G M^2}{2D} \quad \text{(II)}
\]

(a) \(\lim_{y \to 0} U_{\text{system}} = -2.7 \times 10^{-11} \text{ J} \) \(\Box \)

\[
\lim_{y \to 0} \left[-\frac{2G m_A M}{R} - \frac{G M^2}{2D} \right] = \lim_{y \to 0} \left[-\frac{2G m_A M}{\sqrt{D^2 + y^2}} - \frac{G M^2}{2D} \right]
= -\frac{G M^2}{2D} = -2.7 \times 10^{-11}
\]

\[
M^2 = \frac{2D}{G} (2.7 \times 10^{-11}) = 2 \left(0.3057 \text{ m} \right) \frac{(2.7 \times 10^{-11})}{\text{kg}^2} \text{m}^2 \text{kg}^{-2}
\]

\(M = 0.497 \text{ kg} \) = mass of particles B & C \(\Box \)

(b) \(\lim_{y \to 0} U_{\text{system}} = -3.5 \times 10^{-11} \text{ J} \) (from plot) \(\Box \)

\[
\lim_{y \to 0} \left[-\frac{2G m_A M}{R} - \frac{G M^2}{2D} \right] = \lim_{y \to 0} \left[-\frac{2G m_A M}{\sqrt{D^2 + y^2}} - \frac{G M^2}{2D} \right]
= -2G m_A M - \frac{G M^2}{2D} = -3.5 \times 10^{-11}
\]

\[
m_A = \left[-3.5 \times 10^{-11} + \frac{G M^2 - D}{2D} \right] \frac{1}{2GM}
\]
(cont.)

\[M_A = \left[-3.5 \times 10^5 + \frac{6.67 \times 10^{-11} \text{ m}^3}{\text{kg}^2} \left(0.497 \text{ kg} \right)^2 \right] - \frac{0.3057}{2(6.67 \times 10^{-11})(0.497\text{ kg})} \]
\[= 1.4896 \text{ kg}, \ 	ext{mass of particle A} \]

Problem 3 problem 13-52

Given: A Satellite in geosynchronous orbit over the equator
Find: the attitude

To stay in orbit over the same spot on earth, the period of the satellite must be the same as earth: 1 day

\[T = 1 \text{ day} \]
\[= \frac{2\pi}{1 \text{ day}} \frac{\text{day}}{24 \text{ hours}} \frac{\text{hour}}{60 \text{ min}} \frac{\text{min}}{60 \text{ sec}} = 0.000073 \text{ rad/sec} \]

For the satellite not to fall, the centripetal force must be balanced by the gravitational force

\[F_c = F_g \]

\[\frac{G M M}{r^2} \]

\[r \left(\frac{2\pi}{T} \right)^2 = \frac{G M M}{r^2} \]

\[r^3 = \frac{G M M}{\left(\frac{2\pi}{T} \right)^2} \Rightarrow r = \frac{3}{\left(\frac{2\pi}{T} \right)^2} \]

\[= \frac{3}{\left(\frac{2\pi}{0.000073\text{ rad/sec}} \right)^2} \]

\[= 4.225 \times 10^7 \text{ m} \]

Altitude is distance above Earth

\[h = r - r_e \]

\[= (4.225 \times 10^7 - 6.37 \times 10^6) \text{ m} \]

\[= 3.588 \times 10^7 \text{ m} \]
An asteroid, Ida, is orbited by a small moon, Dactyl.

$a_{moon} = 1.5 \text{ km} \\
T = 100 \text{ km} \\
D_{moon} = 55 \text{ km}

Assume circular orbit with $T = 27 \text{ h}$

Find:
(a) Mass of asteroid
(b) If $V_{asteroid} = 14100 \text{ km}^3$
 find ρ

For the moon to stay in orbit:

(a) \[
F_c = F_g \\
F_c = \frac{G m_{moon} M_{asteroid}}{r^2} \\
F_c = \frac{G m_{moon} m_{asteroid}}{r^2} \\
w^2 r = \frac{G M_{asteroid}}{r^2} \\
M_{asteroid} = \frac{w^2 r^3}{G} \\
= \left(\frac{2\pi}{27 \text{ h}} \right)^2 \left[\frac{100 \text{ km}}{1000 \text{ km}} \right]^3 \\
= \frac{6.26 \text{e-11} \text{ m}^3}{\text{kg} \cdot \text{sec}^2} \\
= 6.26 \text{e}16 \text{ kg}
\]

(b) $\rho = \frac{M_{asteroid}}{V_{asteroid}} = \frac{6.26 \text{e16} \text{ kg}}{14100 \text{ km}^3 \cdot (1000 \text{ m}^3/\text{km})^3}$

$= 4443.1 \text{ kg/m}^3$
Problem 13-68

2 space ships start out in Circular Orbits around Earth. Igor is travelling 90° ahead of Picard.

$h = 400\text{ km}$ altitude, $M = 2000\text{ kg} = M_i = M_p$

Find (a) T_i period
(b) V_o Speed

Initially $T_i = T_p$ & Picard

must be true or else the com would change, and
this is not possible with no external forces.

$T_i = T_p = T_0$

To stay in orbit the centripetal force must balance the gravitational force.

\[F_c = F_g \]
\[\frac{M_e}{r^2} = \frac{GM_E}{r^2} \]

\[\omega^2 r = \frac{GM_E}{r^2} \]
\[\frac{V_o^2}{r^2} r = \frac{GM_E}{r^2} \]
\[V_o^2 = \frac{GM_E}{r} \Rightarrow V_o = \sqrt{\frac{GM_E}{r}} \]

\[r = h + r_{\text{Earth}} \]
\[V_o = \sqrt{\frac{GM_E}{r}} = \sqrt{\frac{\left(6.67 \times 10^{-11} \text{ m}^3/\text{kg s}^2\right) 5.98 \times 10^5 \text{ kg}} {400 \text{ km} + 6.37 \times 10^6 \text{ m}}} \]
\[= 7675.72 \text{ m/s} \]

(b) \[T_0 = \frac{2\pi}{V_o} = \frac{2\pi r}{V_0} = \frac{2\pi r}{V_0} = \frac{2\pi \left(400 \text{ km}, 1000 \text{ km} + 6.37 \times 10^6 \text{ m}\right)}{7675.72 \text{ m/s}} \]

(a) \[= 5541.78 \text{ s} = 1.539 \text{ hrs} \]
At point P, Picard fires a burst which reduces his speed by 1.00%.

Find(c) \(KE_f \)

(d) \(v_f \) (immediately after the burst)

(e) In the new orbit, find \(E \)

(f) \(\alpha \)

(g) \(T \)

(h) how much earlier will Picard arrive back at \(P \).

(c) \[
\begin{align*}
V_f &= V_0 - 0.01 \times V_0 \\
&= 0.99 \times V_0 \\
KE_f &= \frac{1}{2} m v_f^2 \\
&= \frac{1}{2} (2000 \text{ kg}) (0.99 \times 7675.72 \text{ m/s})^2 \\
&= 5.77 \times 10^9 \text{ J}
\end{align*}
\]

Note: Mass of Earth \(M_E = 5.98 \times 10^{24} \text{ kg} \)

radius of Earth \(r_E = 6.37 \times 10^6 \text{ m} \)

(Table 13.2)

(d) After the burst, Potential energy remains the same:

\[
U_f = \frac{G m M_E}{r} = \frac{6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2 (2000 \text{ kg}) (5.98 \times 10^{24} \text{ kg})}{(900 \text{ km} / 1000 \text{ m/km} + 6.37 \times 10^6 \text{ m})} \\
= -1.17 \times 10^{11} \text{ J}
\]

(e) Total Energy

\[
E_f = U_f + KE_f = 5.77 \times 10^9 \text{ J} + -1.17 \times 10^{11} \text{ J} = -6.01 \times 10^9 \text{ J}
\]
(f) \(E = \frac{-GMm}{2a} = 6.01 \times 10^5 \text{ J} \) from part (e)

\[
\alpha = \left(\frac{6.67 \times 10^{-11} \text{ m}^3/\text{kg}^2 \cdot (5.98 \times 10^5 \text{ kg})}{2 \times (6.01 \times 10^5 \text{ J})}\right)^{\frac{1}{2}} \Rightarrow 6637.9 \text{ km}
\]

(g) Kepler's 3rd Law:

\[
T_f^2 = \left(\frac{4\pi^2}{GM}\right)\alpha^3
\]

\[
= \frac{4\pi^2}{(6.67 \times 10^{-11} \text{ m}^3/\text{kg}^2 \cdot (5.98 \times 10^5 \text{ kg}))^3}
\]

\[
= 2.894 \times 10^7 \text{ s}^2
\]

\[
T_f = \sqrt{2.894 \times 10^7 \text{ s}^2} = 5380.38 \text{ s}
\]

(h) What is the time difference?

Initially, Igor has a 90s head start. Call \(t = 0 \) when Igor passes P.

Igor returns at \(t_f = 70 \text{ s} \) secs

\[
t_p = 90 \text{ s} + T_f = 90 + 5380.38 \text{ s} = 5470.38 \text{ s}
\]

Picard takes 90s to get to P+P, then decelerates

How much earlier:

\[
\Delta t = |t_p - t_f| = |5470.38 \text{ s} - 5541.78 \text{ s}| = 71.4 \text{ seconds}
\]
Problem 6 (text problem 13-99)

Gravitational attraction on mass \(m \).

Note: Net force is on x-axis only — radial part cancels around the ring.

- Consider a small piece of the ring with mass \(dm \). The gravitational force on \(m \) from \(dm \) is:

\[
F_g = \frac{G \cdot m \cdot dm}{r^2} = \frac{G \cdot m \cdot dm}{x^2 + r^2} \quad \text{(acting on the line between \(m \) and \(dm \))}
\]

The x-component is:

\[
F_{gx} = \frac{F_g \cdot \cos \theta}{r} = \frac{G \cdot m \cdot x}{(x^2 + r^2)^{3/2}}
\]

- The total gravitational force is:

\[
\int_{(\text{entire ring})} \frac{G \cdot m \cdot x}{(x^2 + r^2)^{3/2}} \, dm = \frac{G \cdot m \cdot m}{(x^2 + R^2)^{3/2}} \quad \text{toward the center of the ring}
\]

6. Suppose the mass \(m \) starts from rest at \(x \). What's its velocity as it passes through the center of the ring?

\[m \overset{\text{kinetic energy}}{\rightarrow} x\overset{\text{potential energy}}{\rightarrow} 0\]

(\text{final state}) \overset{\text{kinetic energy}}{\rightarrow} \overset{\text{potential energy}}{\rightarrow} \overset{\text{kinetic energy}}{\rightarrow} \text{(initial state)}

\[
\frac{1}{2} m v^2 = U(x) - U(x=0) = -\frac{G \cdot m \cdot M}{\sqrt{x^2 + R^2}} + \frac{G \cdot m \cdot M}{R}
\]

So \(v^2 = 2GM \left[\frac{1}{R} - \frac{1}{\sqrt{x^2 + R^2}} \right] \)

And \(v = \sqrt{2GM \left[\frac{1}{R} - \frac{1}{\sqrt{x^2 + R^2}} \right]} \)